A High Performance C Package for Tridiagonalization of Complex Symmetric Matrices

نویسندگان

  • Guohong Liu
  • Sanzheng Qiao
چکیده

Block algorithms have better performance than scalar and single vector algorithms due to their exploitation of memory hierarchy. This paper presents a high performance C implementation of a block Lanczos tridiagonalization algorithm for complex symmetric matrices. The design principles of the implementation and techniques used in the implementation are described. Our experiments show that this implementation has high performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Lanczos Tridiagonalization of Complex Symmetric Matrices

The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block algorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise technique for detecting the loss of orthogonality to stablize the block ...

متن کامل

Tridiagonalizing Complex Symmetric Matrices in Waveguide Simulations

We discuss a method for solving complex symmetric (nonHermitian) eigenproblems Ax = λBx arising in an application from optoelectronics, where reduced accuracy requirements provide an opportunity for trading accuracy for performance. In this case, the objective is to exploit the structural symmetry. Consequently, our focus is on a nonHermitian tridiagonalization process. For solving the resultin...

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

An Algorithm for Simultaneous Band Reduction of Two Dense Symmetric Matrices

In this paper, we propose an algorithm for simultaneously reducing two dense symmetric matrices to band form with the same bandwidth by congruent transformations. The simultaneous band reduction can be considered as an extension of the simultaneous tridiagonalization of two dense symmetric matrices. In contrast to algorithms of simultaneous tridiagonalization that are based on Level-2 BLAS (Bas...

متن کامل

Comparison of eigensolvers for symmetric band matrices

We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005